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Purpose

The primary objective of our study is to use machine learning algorithms to identify a set

of key lifestyle factors that uniquely distinguish individuals with and without heart diseases.

Introduction

A. Literature Review

The importance of our project lies in its potential to revolutionize the prediction and

prevention of cardiovascular diseases (CDV) by leveraging insights gained from analyzing

diverse datasets, such as the Cardiovascular dataset (CDV) we have examined. By delving into

the intricate relationship between various phenotypic traits and the presence of heart disease, we

aim to uncover early indicators that could serve as valuable predictors.

Understanding the nuances of individuals' food habits, body mass index (BMI), and other

lifestyle factors can offer crucial insights into their susceptibility to CDV. Research indicates that

dietary patterns play a significant role in the development and progression of cardiovascular

diseases. For instance, high intake of processed foods, saturated fats, and sugars is associated

with an increased risk of heart disease, while diets rich in fruits, vegetables, and whole grains are

linked to a lower risk (Sofi et al., 2008). Analyzing the dietary habits recorded in the CDV

dataset can provide valuable information about the dietary patterns prevalent among individuals

with heart disease, facilitating targeted interventions and dietary recommendations.

Furthermore, BMI, a measure of body fat based on height and weight, is a known risk

factor for cardiovascular diseases. Research suggests that individuals with elevated BMI levels

are more prone to developing heart disease, hypertension, and other related conditions (Poirier et

al., 2006). By examining the BMI distribution within the CDV dataset and its correlation with
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the presence of heart disease, we can identify high-risk populations and develop personalized

strategies for weight management and cardiovascular risk reduction.

Moreover, the CDV dataset encompasses a wide range of features related to mental

health, such as depressive episodes. Studies have demonstrated a bidirectional relationship

between depression and cardiovascular diseases, with depression increasing the risk of

developing heart disease and vice versa (Van der Kooy et al., 2007). By analyzing the prevalence

of depressive episodes among individuals with heart disease within the CDV dataset, we can

elucidate the interplay between mental health and cardiovascular health, paving the way for

integrated interventions targeting both domains. So, this study is significant as it looks at all the

different things that can cause heart problems and why we need to do something about it,

focusing on the need for effective preventive measures and interventions.

In conclusion, our project holds significant importance for predicting and preventing

cardiovascular diseases by harnessing the wealth of information contained within datasets like

the CDV dataset. By uncovering associations between various phenotypic traits and the presence

of heart disease, we can develop more accurate predictive models and tailored interventions to

mitigate cardiovascular risk effectively.

B. Background

Heart disease encompasses a range of conditions affecting the heart, with coronary artery

disease (CAD) being the most prevalent type in the United States. CAD impedes blood flow to

the heart, increasing the risk of heart attacks which is a significant contributor to mortality

according to the Centers for Disease Control and Prevention (CDC). Globally, cardiovascular

disease (CVD) is the leading cause of death, taking approximately 17.9 million lives annually as

reported by the World Health Organization (WHO). It remains a significant global health
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concern, with its prevalence steadily increasing due to various lifestyle factors and behaviors.

Familial predispositions significantly influence heart disease susceptibility, with individuals

possessing a family history of heart disease at heightened risk. Various forms of heart disease

and related conditions, including high blood pressure and high blood cholesterol, can exhibit

familial clustering, reiterating the importance of understanding one's family health history in

preventing future cardiac events, as emphasized by the CDC.

While traditional risk factors such as hypertension, diabetes, obesity, and smoking have

long served as predictors for heart disease, recent research has unveiled a concerning trend.

Studies conducted by the University of Sydney and Heart Research Australia reveal an increase

in heart attack patients lacking conventional risk factors, such as elevated cholesterol levels. This

observation highlights the complexity of heart disease causes and the need for a more

comprehensive understanding of contributing factors. Despite advancements in cardiovascular

research, a unified theory explains that the causes of heart disease is difficult to define.

Accurately characterizing the important lifestyle factors of patients with and without

heart diseases is pivotal. This will enable clinicians to provide precautions to people who are at

risk. Early detection and management of CVD risk factors are crucial for preventing disease

progression and reducing the burden of cardiovascular events. Furthermore, findings of such

studies may allow policy makers to come up with policies that discourses high risk factors

associated with heart diseases. A possible approach to addressing questions around

phenotypically complexity of cardiovascular health is through the use of machine learning tools

that learn statistically relevant features within this complexity. Such machine learning methods

recently have emerged as a well-suited technique to explore the risk factors associated with heart

disease.
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In recent years, significant strides have been made in cardiovascular medicine,

exemplified by breakthroughs in technology aimed at restoring blood flow to obstructed and

narrowed arteries. These advancements, highlighted by the American Heart Association, hold

promising potential in preventing deaths and disability across diverse patient populations,

including those with severe comorbidities. As researchers deepen their understanding of the

complex nature of cardiovascular disease, the search for effective interventions to combat heart

disease and stroke persists, driving progress towards improved patient outcomes and enhanced

public health initiatives. By integrating diverse approaches into comprehensive cardiovascular

care models, healthcare providers can better address the complex and multifactorial nature of

cardiovascular disease, ultimately leading to improved patient outcomes and population-wide

cardiovascular health.

C. Kaggle CVD Datasets

A variety of heart-health related survey data capturing lifestyle factors of individuals is

publicly available, such as on Kaggle (refer to the CVD Dataset Link). The Cardiovascular

Disease Risk Prediction Dataset (CVDs) represents one of many such datasets and includes key

variables potentially indicative of cardiovascular diseases. This dataset originates from a

telephone-based survey conducted in 2021 across 47 states, using the Behavioral Risk Factor

Surveillance System (BRFSS) administered by the Centers for Disease Control and Prevention.

For further details on the questionnaire, interview procedures, and the data itself, please see the

BRFSS 2021 Overview. While the comprehensive BRFSS dataset encompassed 304 features

from 438,693 participants, the version available on Kaggle has been condensed to include only

19 features that provide insights into the mental and physical health, dietary habits, and lifestyle

choices of the patients.

https://www.kaggle.com/datasets/alphiree/cardiovascular-diseases-risk-prediction-dataset
https://www.cdc.gov/brfss/annual_data/2021/pdf/Overview_2021-508.pdf
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For our class project, we utilized the CVD dataset to investigate whether we could

effectively classify participants with heart disease from those without, leveraging the diverse

lifestyle factors provided in the data. Our primary goal is to develop a model with high

predictability. Additionally, we seek to identify the key features that significantly contribute to

distinguishing individuals with and without heart disease. By unraveling the complex

relationship between various phenotypic traits associated with heart diseases, we aim to gain

insights that could potentially revolutionize the prediction and prevention of cardiovascular

diseases. Ultimately, this knowledge may empower researchers and clinicians to proactively steer

their patients away from the risk of heart disease.

To explore the above question using the CVD dataset, we considered several machine

learning algorithms. Previous analyses of this dataset have utilized various statistical and

machine learning techniques to uncover patterns and relationships within the data. These

methodologies include logistic regression modeling, which aims to predict binary outcomes

based on predictor variables as well as univariate, multivariate, and bivariate analyses, which

explore relationships between individual and multiple variables. Additionally, deep learning

approaches such as deep neural network (DNN) models, recurrent neural network (RNN)

models, and long short-term memory (LSTM) models have been used to capture complex

nonlinear dependencies and temporal dynamics within the data. The CVD data features include

twelve continuous features and seven categorical, with several binary predictors such as smoking

status, diabetes presence, and depressive episodes, which are relevant for heart health

assessment. To us, given the large number of binary predictors and the substantial volume of

data, logistic regression and random forest model were the most suitable analytical tool for

predicting heart disease among subjects in this dataset. However, delving deeper into Kaggle
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website and prior research articles on the dataset, we found out that logistic regression was

previously utilized on the dataset (Lupague et al, 2023; Kaggle).

Consequently, random forest was the machine learning algorithm that seemed suitable for

our project. Although we found one Kaggle article on the CVD dataset incorporated random

forest algorithm, they only compute the performance and predictive power of the random forest

model (see Random Forest Kaggle). They did not explore the key characteristics of patients with

heart diseases using the random forest model. Furthermore, this and other analysis on the dataset

in Kaggle was done using the python programming language. We utilized novel random forest

modeling techniques to its fuller capacity on the CVD dataset in R. In this regard, our ideas,

codes and approach all stand out for its originality.

D. Machine Learning Algorithm: Random Forest

The concept of random forest modeling is an advanced extension of decision tree

modeling that incorporates multiple decision trees to aggregate their predictions, thereby

enhancing predictive power and stability. This method mirrors systematic human thought

processes, where decisions are made based on a series of sequential steps. For example, consider

the decision to visit a grocery store, influenced by factors such as weather, personal schedule,

and the current amount of food in the refrigerator. In decision tree modeling, this process would

be emulated algorithmically, with data features evaluated at each step to predict outcomes, such

as deciding to visit the store if the weather is pleasant, or refraining if there's enough food. The

following figure (decision tree 1) shows how we would make decisions on whether to go to

grocery stores or not.

Decision Tree 1.

https://www.kaggle.com/datasets/alphiree/cardiovascular-diseases-risk-prediction-dataset/code
https://www.kaggle.com/code/khansoledhiraj/random-forest


8

Unlike a single decision tree, which follows one analytical path, a random forest utilizes

numerous trees, each analyzing a variable set of decision pathways. This incorporation of

inherent randomness and additional degrees of freedom helps to mitigate overfitting, a common

pitfall associated with single decision trees. The ensemble nature of random forests not only

improves the generalizability of the model but also allows for a more thorough examination of

the significance of each feature in classifying outcomes like heart disease. This approach

effectively uses collective insights to provide a more in depth understanding of complex

phenomena.

A distinctive feature of the random forest algorithm is its ability to evaluate the

importance of each variable. In this context, variable importance indicates how significantly a

variable has contributed to diminishing the error rate or enhancing the model's predictive

accuracy. This assessment facilitates the ranking of predictors from most to least crucial, aiding

in more informed decision-making and prediction improvements. Additionally, partial
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dependence plots can be utilized to examine the influence of each feature on the model, across

various levels of the feature values. Therefore, in order to improve our understanding and

interpretability of this model, finally, we also plotted partial dependence plots on the top 8

important features.

E. Aim of the Study

To encapsulate once again, our study attempts to characterize the identifying lifestyle

aspects of individuals with heart diseases using random forest machine learning algorithms.

Overall, our approach should offer insights on how the data and machine learning algorithms

should be handled or incorporated while investigating health-care related research questions.

Method

A. Data

The CVD data did not include any missing data. About 8% (n = 24, 971) of the total

participants in the telephone survey had reported having heart diseases.

B. Data Pre-processing

Despite having access to a large dataset of observations, we opted to analyze only a

subset of the CVD data. This decision was driven by the considerable time random forest

required to construct a model when using the entire dataset. The algorithm's reliance on

numerous decision trees demands substantial computational resources. Consequently, we

mitigated this issue by reducing the dataset to 20,000 randomly sampled data points. This subset

comprised an equal distribution of observations from both groups: 10,000 participants with

healthy hearts and 10,000 with unhealthy hearts.
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During the next stage of pre-processing, we refined the variables age and diabetes for

modeling purposes. Since each participant's age in the CVD dataset was represented as a range

rather than a numerical value (e.g., "50-60" and "80+"), we converted these age bins into

numerical values by assigning each participant's age to the midpoint of the range they fell into.

The variable "diabetes" encompassed four distinct levels of observations: "Yes," "No," "Yes, but

females reported only during pregnancy," and "No, pre-diabetes or borderline diabetes." Notably,

there were a small number of observations in the last two conditions. To maintain clarity and

prevent confounding interpretations during analysis, we excluded 677 observations that fell

outside of the "yes" and "no" categories for diabetes. As a result, our model utilized 19,323

observations, comprising 9,649 participants with heart diseases and 9,674 participants without

heart diseases.

Finally, the CVD dataset included many of the dichotomous variables (such as exercise,

heart disease, and depression) in the character form. We then converted the datatype of several of

these variables into factor form, so R reads them (yes/no) as categorical entities, rather than as

characters.

C. Features for the Model

We included all the 19 features provided in the dataset, letting the model extract and use

whichever features it finds relevant in predicting the class of the participants with or without

heart disease. We calculated the models' performance for both models and observed their

predictive power as well as out-of-bag error estimates. In addition to finding the important

measures of heart disease, our comparative study attempts to provide pros and cons of

handpicked theory-driven vs. machine learning data-driven techniques. As the Cardiovascular

Disease Risk Prediction Dataset clearly provides categorical labeling (0 and 1) for individuals
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with and without heart disease, we use those labels as the output of our tree-based supervised

learning algorithms.

Table1.

Random Forest Model

Model Features Input Output

1 All features Age, diabetes, fruit consumption, vegetables

consumption, fried potatoes consumption, alcohol,

BMI, depression, sex, diabetes, height, weight,

general health, exercise, skin cancer, smoking

history, checkup, and arthritis.

Heart Disease

(Yes/No)

D. Random Forest Model Algorithm

The random forest algorithm begins through the selection of data subsets through

randomized replacement sampling techniques of the entire dataset that ensures representative

sample distributions. It then constructs a decision tree for each of these subsets, generating a

“forest” of decision pathways that associate phenotypic observations with presence, absence, or

degree, of a set of features. The process of replacement sampling or bagging attempts to simulate

the way data may occur in real populations, where some features and associated phenotypes are

more likely to be observed in natural settings than others. The combinations of features and

phenotype data that are not sampled as often are referred to as “out of bag data” (OOB). From

here, the algorithm proceeds to construct a decision tree for each subset of training data. A

notable aspect of random forest modeling is its inherent feature selection that comes about

through the random selection of a feature or random features at each node of the tree. Each tree's
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growth continues to propagate until the process can no longer split the tree. Once all possible

trees that can be made from the data are completed through bootstrapping the dataset, predictions

for out of the bag data is formulated by aggregating (majority vote) the decisions across all trees.

This methodology ultimately enhances the random forest model’s resistances to overfitting and

improves its generalizability.

Steps to Random Forest Model Training

1. Data Splitting: We begin our classification process with a systematic partitioning of the

data from both the heart-healthy and the individuals with heart disease into two subsets: a

larger training set, which accounts for 70% of our data, and a smaller testing set, making

up the remaining 30%.

2. Model Developing: We then fit the suitable model to the training data, developing a

model that discerns the probability of heart disease for each participant. At this stage, we

also recorded the model’s out of bag error estimate and its predictive power.

3. Tuning Parameter: Random forest models require a set of crucial parameters tuning. We

optimized two of them—first, the total number of decision trees (ntrees), and second, the

number of features to consider splitting at each node of the decision trees(m). While the

default number of trees that the random forest package sets to is 500, we investigated

whether increasing the number of trees to 1000 would lead to a noticeable improvement

in the prediction rate. Similarly, to determine the optimal number of variables for

splitting, we further examined how the error rate varies as we increase the number of

features splitting.

4. After the parameter tuning procedure, the model is finally tasked with predicting

outcomes for the individuals in our testing set. The accuracy of the model is evaluated by
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how well these predicted probabilities match up with the participants' actual diagnostic

outcomes.

5. Finally, the important features used in the classification were noted for the model and

were analyzed briefly voa partial dependence plots.

The above steps are also illustrated in the flow-chart below.

E. Computational Programming Software

For our statistical computations, we will use R as the primary software due to its robust

packaging ecosystem and capacity for handling complex statistical tasks. “randomforest”,

“caret”, “ggplot2”, and “ggalt” were some of the packages extensively used in our project.
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Results

A. Tuning Parameter

As discussed in the method section, we first utilized the random forest algorithm to the

training data set and obtained our model. Then, before analyzing the model, we ensured that two

important tuning parameters (ntrees)—number of decision trees in the forest and number of splits

considered by each tree while splitting the node (m)—were set to their optimal values, since the

default number of decision trees, which is 500, may not be the optimal number of decision trees.

Figure 1 shows how the model’s out of the bag error estimate changed as a function of number of

decision trees in the forest when ntrees is 500 vs 1000.

As seen in the figure, increasing the number of decision trees from 500 (figures on left) to

1000 (figures on the right) did not substantially decrease the out of bag error (OOB) estimate.

Consequently, we fixed our number of decision trees for our model to their default value of 500,

as increasing the complexity of the model did not appear to improve the model performance. 500

decision trees were enough to get a stable out of bag error estimate (OOB).



15

Then, the performance of the model was analyzed at different variable split numbers (m)

from 1 to 10. While the default value of m used in randomforest package is , where p is the𝑝

number of predictors, our analysis showed that the variable split number of 2 was capable of

getting the lowest OOB for our model.

B. Model Performance

After parameter tuning, the performances were computed for the model. Table 2

illustrates the confusion matrix performance on both the training and testing set. The out of bag

error estimate for the model was 24.43%.

Table 2:Model with All Features

Predicted
Observation

True Observation

Training Set Testing Set

Heart Healthy Heart Disease Heart Healthy Heart Disease

Heart
Healthy

6091 384 2022 541

Heart
Disease

657 6394 904 2330

The specificity and sensitivity of our random forest model were calculated to assess its

accuracy on the testing dataset. Our result indicated that our model with all features achieved a

specificity of 81.16% and sensitivity of 69.90% in detecting heart condition in adult participants.

According to our analysis, the specificity of both models was higher compared to their

sensitivity. This suggests that our model was more successful in correctly rejecting the

participants without heart disease than in correctly identifying participants without heart disease.

C. Feature Importance
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Finally, we computed the rankings of the feature importance, from the ones that

contributed the most to the ones that contributed the least, in determining participants with and

without heart disease. Figures 2 illustrate the contributions of each of the features to model

performance for our model respectively according to mean decrease in gini measure. Gini

captures how much each of the variables contributes to the similarity of the nodes and leaves in

the random forest. Then the mean decrease in gini algorithm calculates how much of the

similarity or homogeneity of the nodes in a tree is reduced as a function of the individual feature

while making decisions. In other words, this algorithm gives us the order of the importance of

the features in determining whether participants have heart disease or not.

Figure 2
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Our random forest models showed that patients’ age is the most important factor in

distinguishing people with and without heart disease. According to our model, after age, one’s

general health is the next important measure to predict their heart condition. Then, it was

followed by BMI, weight, height. and their eating habits. Smoking history, sex, exercise, skin

cancer, other cancer and depression were the least important predictors in the model.

D. Partial Dependence Plot

To improve the interpretability of the study, in the next step of the analysis, we plotted the partial

dependence plot of the top 8 features in Figure 3. This allowed us to examine how exactly these

features contributed to the prediction of patients’ heart conditions. The following partial

dependence plots show how the probability of having heart disease changes at the different

values/levels of the predictors. For instance, our random forest model predicted that the

individuals are more likely to get heart disease as they get older, though the probability does not

increase exactly linearly.
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Figure 3: Partial dependence plot of the top 8 features from the model. The y axis represents the
patient's predicted rate of heart-disease, whereas the x axis represents the value of the predictor.
For first plot (1), it is age in years, levels on general health (2), BMI index (3), height in cm (4),
weight (in kg) (5), servings of veggie consumption servings in a month (6), serving of fruits in a
month (7), and fried potatoes consumption in a month (8). (Note: some of the features include
values outside the decile range).

The plot suggests that predicted heart rate goes up with the increase in age. However,

interpreting other partial dependence plots requires caution. Looking closely at the partial

dependence plot, we observed that height, weight, and dietary predictors are not normally

distributed and they may include a significant proportion of outliers. However, if we only

observe the data where decile points lie proportionally, the plots show that the rate of heart
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disease increases with BMI, height, and weight, but decreases when people have good general

health and they consume fruits, vegetables and even fried potatoes. Interpreting how exactly

fried potatoes affect the rate of heart diseases however requires further analysis.

Discussion

A. Summary of the Findings

As shown in the result section, random forest Model reached 74% accuracy in accurately

predicting the heart condition of patients on an independent dataset. Examining the feature

importance ranking of the full feature model, we discovered that patients’ age, their general

health, BMI, weight, height, and dietary habits were the most significant and informative

predictors, whereas smoking habits, sex, exercise, skin cancer, other cancer and depression were

not very informative in predicting one’s heart condition.

According to our model, after around 56 years of age, the likelihood of patients getting

heart diseases increases almost linearly. Next, people with overall good health were predicted

with less risk of heart disease. Our model also validated numerous previous findings on the

positive relationship between BMI and heart disease. For instance, excess body weight,

especially when concentrated around the abdomen, has been linked to various cardiovascular risk

factors such as hypertension, dyslipidemia, insulin resistance, and inflammation, all of which

contribute to the development of heart disease (Angelantonio, 2016). Moreover, our model

suggested an inverse relationship between fruit consumption and green vegetables consumption

with the risk of heart disease, whereas a direct relationship between fried potato consumption

and heart disease. These findings are consistent with current research findings, as research has

shown that fruits, rich in antioxidants, vitamins, minerals, and fiber, have cardioprotective

effects. Regular consumption of fruits is associated with lower blood pressure, improved lipid
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profiles, reduced inflammation, and enhanced endothelial function, all of which contribute to a

lower risk of heart disease (Wang, 2014; Boeing, 2012). On the other hand, high consumption of

fried potatoes, especially in the form of French fries and potato chips, has been associated with

an increased risk of heart disease. Fried potatoes are typically high in unhealthy fats, calories,

and sodium, and their consumption is linked to weight gain, elevated blood pressure,

dyslipidemia, insulin resistance, and inflammation, all of which are risk factors for heart disease

(Mozaffarian, 2011).

Finally, constructing a random forest model using all features of the CVD data, we

discovered that machine learning classification technique has an amazing capability of showing

the relationship between predictors and the outcome that would have been missed otherwise.

While it was reasonable that age, general health, BMI and dietary habits played a crucial role, we

also found that in addition to BMI, height and weight were also incorporated as the important

predictors in our model. Even though height does not seem to play a key role in explaining heart

disease, our feature importance plot suggests that it is one of the highly predictive features. This

suggests that there may be a direct/indirect correlation between increased height and risk of heart

disease, prompting the need for further investigation in this area.

B. Implications of the Findings

The findings from our study can directly inform clinical practice by providing healthcare

professionals with actionable information to counsel and educate their patients. By highlighting

factors such as age, BMI, and dietary habits, clinicians can tailor their advice and

recommendations to address these modifiable risk factors. We found that after around 56 to 80

years of age, the likelihood of patients getting heart diseases increases almost linearly. Maybe

clinicians can use this information by asking patients after 50 years of age to consistently do
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physical exams and their heart condition. We found a direct relationship between general health

and heart health. Clinicians can use this information by recommending patients with poor general

health to keep track of health.

Then, our model suggests that as weight (between 50 kg to 100 kg) and height (between

160 cm to 180 cm) increases, the rate of getting heart disease seems to increase proportionally.

Though this finding needs further investigation before drawing a conclusion, there is a possibility

of a genuine relationship between these factors . If a true relationship exists, this is a significant

finding, since policy makers can target and designate resources and special heart-health plans

differently for people from different countries and ethnicities, since distribution of heights for

people from different countries and different ethnicities vary. Moreover, health care workers can

also provide specific guidance on incorporating more fruits and vegetables into patients' diets

while limiting the consumption of fried or processed foods. Overall, our study underscores the

need for regular monitoring and tracking of these lifestyle factors.

Our findings also align with and reinforce the existing knowledge about the risk factors

associated with heart disease. The result corroborates the well-established links between lifestyle

factors and cardiovascular health. Replicating these findings using a different dataset and

analytical approach (random forest), we were able to strengthen the hypothesized relationship

between heart disease and life-style factors. Moreover, by pointing out age, general health, BMI

and dietary habits play a key role in determining heart condition, we demystified the puzzle to

heart disease. Lifestyle factors play a significant role and they should be incorporated in order to

protect ourselves and our loved one from heart diseases. Furthermore, the ranking of feature

importance provides valuable insights into the comparative contributions of each factor, which

can inform targeted interventions and preventive strategies.
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Finally, the successful application of the random forest algorithm in our study showcases

its potential for exploring other complex public health issues. Similar techniques can be

employed to analyze diverse datasets, identify patterns, and uncover critical risk factors or

predictors associated with various health conditions or outcomes. Our comparative approach

highlights the versatility of machine learning techniques. Demonstrating the effective machine

learning methods used in our study paves the way for further adoption and exploration of these

techniques in public health research.

C. Future Direction

For future studies, we will ask if the predictive performance of the model increases if we

remove the outliers from all of our features. It is possible that the 74% accuracy of the model

was due to the inclusion of the outliers in the variables. Then, we will calculate and visualize the

feature importance rankings for the new models without outliers. We will compare these

rankings with the original rankings from the models fitted on the dataset with outliers and

analyze whether the relative importance of features has changed significantly after removing

outliers. By conducting this comparative analysis, we can gain insight into the robustness of our

findings and the extent to which outliers may have influenced the interpretation of feature

importance and partial dependence relationships. If the feature importance rankings and partial

dependence plots remain consistent after removing outliers, it would suggest that the original

findings are robust and not overly influenced by extreme values.

Moving forward, then, we will also explore the relationship between height, weight and

heart disease. Is there a genuine relationship between height and heart disease? Or the observed

association between height and heart disease is due to the interaction between height and weight?

In other words, we will analyze if the effect of height on heart disease changes across different
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levels of weight. This analysis will help us identify whether height has a direct and unique

relationship with heart disease.

Because the dataset was so large with over 300,000 features, only 10,000 heart healthy

and 10,000 heart unhealthy features were analyzed. So in future studies we will perform the

same analysis on the whole dataset and observe if we replicate our findings. Class imbalance

within the CDV dataset presents a significant challenge that warrants attention in future

endeavors. To mitigate the potential biases introduced by uneven class distributions, we may

explore techniques such as oversampling, undersampling, or the application of advanced

ensemble methods specifically made to handle imbalanced datasets. By ensuring equitable

representation of both positive and negative instances of heart disease and using the entire

dataset, there may be improvements in the accuracy of the model as well as in the robustness and

generalizability of the models across diverse patient populations.

Finally, we will analyze whether selecting a subset of the feature or a different set of

features enhances the accuracy and interpretability of the models. While random forests offer

inherent feature selection capabilities, further exploration into domain-specific features related to

cardiovascular health, such as genetic markers, advanced imaging data, or additional lifestyle

factors, could enrich the predictive models. Additionally, techniques such as principal component

analysis (PCA) or recursive feature elimination (RFE) can be employed to identify the most

informative features and mitigate the impact of irrelevant or redundant variables.

D. Limitation of our Study

While the study employed a random sampling approach to create a manageable subset of

the CVD dataset, there is a possibility that the results may not fully generalize to the entire

population. By analyzing only a portion of the data (20,000 observations), our findings may not
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have captured the complete variability and nuances present in the larger dataset. It is also worth

noting that a larger, but biased or non-representative sample may not necessarily yield more

generalizable or interpretable results compared to a smaller, well-curated dataset that accurately

reflects the population of interest.

Although random forests are known for their robustness and ability to handle complex

relationships, they are not immune to certain limitations. The model also may introduce

additional complexities such as the presence of irrelevant or redundant features that can dilute

the signal from the most informative variables, potentially hindering the model’s ability to

identify the key determinants of heart disease risk accurately.

Outliers, which are observations that deviate significantly from most of the data, can have

a substantial impact on the performance and interpretability of machine learning models,

including random forests. Many features of our dataset such as height, weight, etc may contain

influential outliers, which may have skewed the feature importance rankings and affected the

partial dependence plots, potentially leading to biased or misleading interpretations.
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